OVAL GEAR FLOW SENSOR IN PPS

1/2"BSP STANDARD RANGE 5 TO 600 L/H

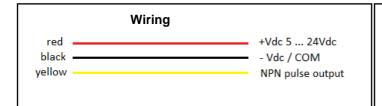
standard version threaded 1/2"BSP male

version with hose tails Ø13mm (1/4")

General features

The oval gear flow sensor is suitable for measuring viscous liquids like diesel, oil, heavy oil, light oil, heating oil and all compatible liquids.

It is a flow sensor with elliptic gears that measures small flows with good accuracy.


Amplifier built-in magnetic sensor, which is strong against noise, output in proportional to the flow velocity.

Measures a wide range of flow rate with high accuracy.

Simple structure due to the elliptic gears employed as a measuring principle.

TECHNICAL FEATURES

Range	5600 l/h (values may change depending on viscosity)
Accuracy	±2% F.S.
Threaded	1/2"BSP male - on request available with hose tails diameter 13mm (1/4")
Pressure	10 bar
Temperature	-10+70°C
Electric Output	pulses NPN - approx 90 ppl / 20 cm 3 wires cable
Power supply	524Vdc max 15mA (5Vdc)
Dimensions	Body 46x46mm – Total Length 85mm
Body material	PPS – Ryton®
Gears material	PPS – Ryton®
Shaft material	Stainless steel AISI304
O-ring material	NBR - Viton on request

Output

NPN square wave 90 ±5% pulses per liter